首页> 外文OA文献 >A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes
【2h】

A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

机译:交错的时空不连续Galerkin方法   非结构化上的三维不可压缩Navier-stokes方程   四面体网格

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we propose a novel arbitrary high order accurate semi-implicitspace-time DG method for the solution of the three-dimensional incompressibleNavier-Stokes equations on staggered unstructured curved tetrahedral meshes. Astypical for space-time DG schemes, the discrete solution is represented interms of space-time basis functions. This allows to achieve very high order ofaccuracy also in time, which is not easy to obtain for the incompressibleNavier-Stokes equations. Similar to staggered finite difference schemes, in ourapproach the discrete pressure is defined on the primary tetrahedral grid,while the discrete velocity is defined on a face-based staggered dual grid. Avery simple and efficient Picard iteration is used in order to derive aspace-time pressure correction algorithm that achieves also high order ofaccuracy in time and that avoids the direct solution of global nonlinearsystems. Formal substitution of the discrete momentum equation on the dual gridinto the discrete continuity equation on the primary grid yields a very sparsefive-point block system for the scalar pressure, which is conveniently solvedwith a matrix-free GMRES algorithm. From numerical experiments we find that thelinear system seems to be reasonably well conditioned, since all simulationsshown in this paper could be run without the use of any preconditioner. For apiecewise constant polynomial approximation in time and proper boundaryconditions, the resulting system is symmetric and positive definite. Thisallows us to use even faster iterative solvers, like the conjugate gradientmethod. The proposed method is verified for approximation polynomials of degreeup to four in space and time by solving a series of typical 3D test problemsand by comparing the obtained numerical results with available exact analyticalsolutions, or with other numerical or experimental reference data.
机译:在本文中,我们提出了一种新颖的任意高阶精确半隐式时空DG方法,用于求解交错非结构弯曲四面体网格上的三维不可压缩Navier-Stokes方程。对于时空DG方案而言,这是非典型的,离散解表示为时空基函数项。这也允许及时获得非常高的精度,这对于不可压缩的Navier-Stokes方程而言不容易获得。类似于交错有限差分方案,在我们的方法中,离散压力是在主四面体网格上定义的,而离散速度是在基于面的交错双网格上定义的。使用Avery简单高效的Picard迭代来导出时空压力校正算法,该算法还可以在时间上获得较高的精度,并且可以避免直接求解全局非线性系统。将双网格上的离散动量方程形式正式替换为主网格上的离散连续性方程,可得到标量压力非常稀疏的点系统,可使用无矩阵GMRES算法方便地解决。从数值实验中,我们发现线性系统似乎条件良好,因为本文中显示的所有模拟都可以在不使用任何预处理器的情况下运行。对于时间上的逐项常数多项式逼近和适当的边界条件,所得系统是对称的和正定的。这使我们可以使用更快的迭代求解器,例如共轭梯度法。通过解决一系列典型的3D测试问题,并通过将获得的数值结果与可用的精确解析解或其他数值或实验参考数据进行比较,验证了所提出方法的时空近似度为4的多项式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号